Down-regulation of hepatic nicotine metabolism and a CYP2A6-like enzyme in African green monkeys after long-term nicotine administration.
نویسندگان
چکیده
Nicotine metabolism is decreased in smokers compared with nonsmokers, but the mechanism(s) responsible for the slower metabolism are unknown. Nicotine is inactivated to cotinine by CYP2A6 in human liver [nicotine C-oxidation (NCO)]. CYP2B6 also metabolizes nicotine to cotinine but with lower affinity than CYP2A6. To evaluate the effects of long-term nicotine treatment on hepatic levels of CYP2A6 and CYP2B6, and nicotine metabolism, an African green monkey (AGM) model was developed. As in humans, approximately 80 to 90% of in vitro hepatic NCO is mediated by a CYP2A6-like protein (CYP2A6agm) in this species, as determined by inhibition studies. Male AGM (n = 6 per group) were treated for 3 weeks with nicotine (s.c., 0.3 mg/kg, b.i.d.), phenobarbital (oral, 20 mg/kg, as a positive control for P450 induction), and/or saline (s.c., b.i.d.). Immunoblotting demonstrated a 59% decrease (p < 0.05) in hepatic CYP2A6agm protein in nicotine-treated animals. A CYP2B6-like protein (CYP2B6agm) was modestly and insignificantly decreased (14%, p = 0.11). In vitro NCO was decreased by 41% in the nicotine-treated group (p < 0.05), mediated by a decrease in CYP2A6agm, as demonstrated using inhibitory antibodies. CYP2A6agm mRNA (33%, P < or = 0.05) and CYP2B6agm (35%, p < 0.01) mRNA were also significantly decreased in the nicotine-treated group. Phenobarbital-treated animals demonstrated an increase in CYP2B6agm (650%, p < 0.001), but not CYP2A6agm (20%, p = 0.49). NCO was increased in the phenobarbital-treated group (55%, p < 0.05) by an increase in CYP2B6agm-mediated NCO. Consistent with the slower nicotine metabolism observed in smokers, nicotine may decrease its own metabolism in primates by decreasing the expression of the primary nicotine-metabolizing enzyme CYP2A6.
منابع مشابه
Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys.
In primates, nicotine is metabolically inactivated in the liver by CYP2A6 and possibly CYP2B6. Changes in the levels of these two enzymes may affect nicotine pharmacokinetics and influence smoking behaviors. This study investigated the independent and combined effects of ethanol self-administration and nicotine treatment (0.5 mg/kg b.i.d. s.c.) on hepatic CYP2A6 and CYP2B6 levels (mRNA, protein...
متن کاملCYP2A6 genetic polymorphism and its relation to risk of smoking dependence in male Iranians
Introduction: Nicotine is the psychoactive substance responsible for establishing and maintaining smoking dependence. CYP2A6 is the primary enzyme that inactivates nicotine to cotinine .Genetic variation in CYP2A6 accounts for some of the inter-individual variability in nicotine metabolism and has been indicated to influence smoking behavior and dependence. Therefore, the aim of this study was ...
متن کاملCYP2A6 gene polymorphisms impact to nicotine metabolism
Nicotine is a major addictive compound in tobacco cigarette smoke. After being absorbed by the lung nicotine is rapidly metabolized and mainly inactivated to cotinine by hepatic cytochrome P450 2A6 (CYP2A6) enzyme. Genetic polymorphisms in CYP2A6 may play a role in smoking behavior and nicotine dependence. CYP2A6*1A is the wild type of the CYP2A6 gene which is associated with normal or extensiv...
متن کاملNovel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent.
Cytochrome P450 2A6 (CYP2A6) is a human enzyme best known for metabolizing tobacco-related compounds, such as nicotine, cotinine (COT), and nitrosamine procarcinogens. CYP2A6 genetic variants have been associated with smoking status, cigarette consumption, and tobacco-related cancers. Our objective was to functionally characterize four nonsynonymous CYP2A6 sequence variants with respect to thei...
متن کاملA novel duplication type of CYP2A6 gene in African-American population.
Human CYP2A6 is responsible for the metabolism of nicotine and its genetic polymorphisms affect smoking behavior and risk of lung cancer. In the present study, we identified a novel type of CYP2A6 gene duplication that is created through an unequal crossover event with the CYP2A7 gene at 5.2 to 5.6 kilobases downstream from the stop codon. The novel duplication type of CYP2A6 was found in Afric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2003